EigenJoints-based action recognition using Naïve-Bayes-Nearest-Neighbor
نویسندگان
چکیده
In this paper, we propose an effective method to recognize human actions from 3D positions of body joints. With the release of RGBD sensors and associated SDK, human body joints can be extracted in real time with reasonable accuracy. In our method, we propose a new type of features based on position differences of joints, EigenJoints, which combine action information including static posture, motion, and offset. We further employ the Naïve-Bayes-Nearest-Neighbor (NBNN) classifier for multi-class action classification. The recognition results on the Microsoft Research (MSR) Action3D dataset demonstrate that our approach significantly outperforms the state-of-the-art methods. In addition, we investigate how many frames are necessary for our method to recognize actions on the MSR Action3D dataset. We observe 15-20 frames are sufficient to achieve comparable results to that using the entire video sequences.
منابع مشابه
Effective 3D action recognition using EigenJoints
In this paper, we propose an effective method to recognize human actions using 3D skeleton joints recovered from 3D depth data of RGBD cameras. We design a new action feature descriptor for action recognition based on differences of skeleton joints, i.e., EigenJoints which combine action information including static posture, motion property, and overall dynamics. Accumulated Motion Energy (AME)...
متن کاملPerformance Comparison between Naïve Bayes, Decision Tree and k-Nearest Neighbor in Searching Alternative Design in an Energy Simulation Tool
Energy simulation tool is a tool to simulate energy use by a building prior to the erection of the building. Commonly it has a feature providing alternative designs that are better than the user’s design. In this paper, we propose a novel method in searching alternative design that is by using classification method. The classifiers we use are Naïve Bayes, Decision Tree, and k-Nearest Neighbor. ...
متن کاملInfrared Target Tracking Using Naïve-Bayes-Nearest-Neighbor
Robust yet efficient techniques for detecting and tracking targets in infrared (IR) images are a significant component of automatic target recognition (ATR) systems. In our previous works, we have proposed infrared target detection and tracking systems based on sparse representation method. The proposed infrared target detection and tracking algorithms are based on sparse representation and Bay...
متن کاملDiabetes Prediction by Optimizing the Nearest Neighbor Algorithm Using Genetic Algorithm
Introduction: Diabetes or diabetes mellitus is a metabolic disorder in body when the body does not produce insulin, and produced insulin cannot function normally. The presence of various signs and symptoms of this disease makes it difficult for doctors to diagnose. Data mining allows analysis of patients’ clinical data for medical decision making. The aim of this study was to provide a model fo...
متن کاملDiabetes Prediction by Optimizing the Nearest Neighbor Algorithm Using Genetic Algorithm
Introduction: Diabetes or diabetes mellitus is a metabolic disorder in body when the body does not produce insulin, and produced insulin cannot function normally. The presence of various signs and symptoms of this disease makes it difficult for doctors to diagnose. Data mining allows analysis of patients’ clinical data for medical decision making. The aim of this study was to provide a model fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012